Small Animal Imaging in Drug Development

Martin G. Pomper* and Jae Sung Lee

Johns Hopkins University School of Medicine, Department of Radiology, MD, USA

Abstract: Better mechanistic understanding of disease through mapping of the human and mouse genomes enables rethinking of human infirmity. In the case of cancer, e.g., we may begin to associate disease states with their underlying genetic defects rather than with the organ system involved. That will enable more selective, nontoxic therapies in patients who are genetically predisposed to respond to them. Because one of the major goals of molecular imaging research is to interrogate gene expression noninvasively, it can impact greatly on that process. Most of molecular imaging research is undertaken in small animals, which provide a conduit between in vitro studies and human clinical imaging. We are fortunate to be able to manipulate small animals genetically, and to have increasingly better models of human disease. The ability to study those animals noninvasively and quantitatively with new, high-resolution imaging devices provides the most relevant milieu in which to find and examine new therapies.

Key Words: Molecular imaging; small animal imaging; drug development; gene expression imaging; PET.

INTRODUCTION

The human and mouse genomes are highly homologous [1]. Knowledge of the complete gene sequence of another mammal will enable the construction of relevant animal models of human disease at an unprecedented rate and with high specificity. We can study those models in a variety of ways, most incorporating invasive techniques destructive to the tissue, or we can image them. With imaging we can perform longitudinal studies on single animals without the sampling error inherent to biopsy; however, the most important attribute of imaging is the provision of structural and functional information under physiologic conditions, mimicking the situation observed in the clinic. Molecular imaging can hasten drug development at the target identification and validation stages, in the synthesis and optimization of drug candidates and in pre-phase I to phase II clinical trials, i.e., at almost any point in the process. It provides the link between in vitro studies and those performed in vivo, in humans. Many fine reviews of the use of human imaging in drug development exist [2-10], and an entire issue of The Journal of Clinical Pharmacology has recently been dedicated to that topic [11], so this review will focus on the use of small animal imaging for that purpose. Hume et al. [12] and Myers [13] have recently reviewed small animal imaging with positron emission tomography (PET).

WHY SMALL ANIMAL IMAGING?

Small animal imaging includes mainly rodents, but also involves birds, snakes and other animals with a head or body diameter < 5 cm. Because they are accessible, easy to maintain, have a short reproductive cycle and, more recently, are easily genetically manipulated, the mouse remains the premier animal model for biomedical research. In the forty years since the discovery of the nude mouse, researchers have learned not only how to grow tumor xenografts orthotopically, but also to produce animals that develop tumors de novo or even fluoresce, at will. Approximately 25 million mice are used in biomedical research annually, representing over 90% of all mammalian studies [14]. Over 3,000 knockout strains are currently available and between knockouts, conditional knockouts, transgenic and mutant mice, there is essentially no limit to the diversity of strains able to be produced to study gene function. Perhaps the most obvious reason to image those mice is to learn about the effects genetic manipulation has on each strain, particularly since unexpected phenotypes arise. Imaging with x-ray computed tomography (CT), magnetic resonance (MR), ultrasound (US), optical and radionuclide techniques can provide a nearly complete phenotype, structurally, functionally and longitudinally, of a genetically altered animal. A main goal of such work currently is automation of that process. Other reasons to image (rather than dissect) mice are to decrease the number of animals needed per study, with concurrent decrease of statistical variance, since each animal may serve as its own control; to uncover biochemical pathways, e.g., signal transduction cascades and protein-protein interactions, as they occur in vivo, in mammals; and, to develop new diagnostic and therapeutic agents.

Small animal imaging began as merely another technique to answer questions posed in academic laboratories, but is rapidly becoming an industry. Several commercially available, miniaturized imaging systems for each modality and in-house molecular imaging capabilities are available at several pharmaceutical companies and equipment manufacturers worldwide. The National Cancer Institute (NCI) supports small animal imaging resource programs (SAIRPs), which are university-based and designed to augment ongoing biomedical research with imaging. Small animal imaging was initially undertaken on clinical imaging systems, from which much valuable information continues to be obtained, however it has become clear that to realize the full, i.e.,
quantitative, potential of small animal imaging, dedicated scanners must be produced. Dedicated scanners are needed because the sizes of the regions to be imaged in small animals can be smaller than the resolution of clinical scanners, particularly for radionuclide applications; high-resolution imaging systems can be built with sensitivities on a par with clinical instruments; and, dedicated animal devices do not detract from clinical throughput and allow continuous laboratory investigation to proceed. That last point is actually the main reason that the first dedicated small animal radionuclide imaging device, the Hammersmith RATPET, was produced. Also, dedicated animal systems tend to be less expensive than their clinical counterparts (approximately 1/3 the price) and occupy less space. Although such dedicated systems tend to be housed in radiology departments, where adequate shielding from the high magnetic fields employed and proximity to a cyclotron are available, increasing use of commercially available \(^{18} \text{F}-\)fluorodeoxyglucose (FDG) as a tracer, table-top optical imaging systems and portable ultrasound machines encourage the use of these imaging systems as standard laboratory equipment in any department concerned with molecular imaging research.

DRUG DEVELOPMENT: OVERVIEW

The most important step in the arduous process of drug development is target identification (Fig. 1). Proteins mediate function and therefore are the primary targets in drug development. As we have entered the post-genomic era, the identification of therapeutic targets is no longer a bottleneck in the drug development process. Because of alternative splicing and post-translational modification of the 30,000-40,000 genes identified in the human genome, the number of potential targets is in the hundreds of thousands, up from the mere hundreds of potential targets under study before the sequence became available. Those potential targets must be prioritized so that the 10,000 or so that are clinically viable can be prioritized further and validated.

Target validation occurs through a number of proteomics methods including two-dimensional gel separation of protein mixtures followed by mass spectrometry (2D-MS), transcriptional profiling of mRNAs and functional screening [15]. High-throughput techniques are brought to bear at this stage, in analogy to small molecule screening but at the protein level. Biochemical screens for small molecule binding and enzymatic assays can be performed and have been automated on microarrays [16]. Antisense approaches can also be applied, where the gene that encodes the protein of interest can be shut off when the complementary oligonucleotide binds to its DNA sequence. Cellular function can then be assessed in the absence of function of that protein. An extension of that process to the \textit{in vivo} case involves the use of knockout mice, where homologous recombination enables deletion of the gene that produces the protein of interest and
the effects of the absence of function can then be determined in an animal model. Although surprising phenotypes occasionally arise, calling into question the validity of such models, their use remains a powerful, new method to assess protein function and is gaining increasing use not only in drug but also in radiopharmaceutical development [17]. Screening for the function of intracellular proteins employs protein-protein interaction mapping, a new technique that enables a better understanding of cellular events including signal transduction and drug susceptibility [15]. Phage display, in which a library of proteins can be analyzed on the surface of a bacteriophage, is another method to screen for protein-protein interactions [18, 19]. The mapping of protein-protein interactions is also a current goal in molecular imaging research [20, 21].

The target identification/validation stage is commensurate to the elucidation of pathophysiology of the underlying mechanism under study, e.g., apoptosis during development or cancer therapy, hypoxia-inducible factor-1 (HIF-1α) expression during hypoxia, or overexpression of the prostate-specific membrane antigen in prostate cancer. The vast number of new targets enables the development of therapeutic agents of unique specificity, such as imatinib mesylate (Gleevec), which takes advantage of the Bcr-Abl pathway in the treatment of acute leukemia [22]. For validation, those specific targets require specific functional assays, the most physiologically relevant of which are available through molecular imaging.

The screening of protein function can be avoided if the structure is known. Structure can be determined by nuclear magnetic resonance (NMR) spectroscopy or, more recently, through high-throughput x-ray crystallography, i.e., methods of structural genomics [23]. Homology modeling and computational docking methods also enable a guess at protein structure that, once known, permits the rational synthesis of suitable ligands. Pharmaceutical companies are turning to refined combinatorial libraries to find such ligands. Dynamic combinatorial chemistry and computer-assisted drug design are finding increasing use as well. Once compounds of acceptable affinity and selectivity are identified, their physical properties, i.e., solubility, pKᵣ, logP and passage through a monolayer of caco-2 cells, are determined. Each of those parameters is critical and can be a reason for failure of the drug candidate. Drug metabolism is then studied in human hepatocytes, if possible, or at least in hepatocytes of the species in which later toxicology studies will be performed. Drug-drug interactions are assessed and then the absorption, distribution, metabolism and excretion (ADME - pharmacokinetics) of the candidate drug are determined in rodents and in other species. Further characterization involves radiolabeling the drug candidate and performing whole-body autoradiography and toxikinetikas, the correlation of changes in plasma and tissue concentrations with toxicity. At this point the drug candidate is ready to enter clinical trials.

Information from small animal imaging studies can be extremely helpful at the ligand synthesis/optimization stage, particularly in elucidating pharmacokinetics of the drug candidate. Pharmacokinetic imaging requires the drug candidate to be tagged in some way, usually radiolabeled, but increasingly with fluorescent labels and, for larger molecules, with magnetic labels. In almost all cases, except for radiolabeling an identical site in the drug candidate with carbon-11 for PET, one must be mindful that an analog, rather than the drug candidate, is being studied. Central nervous system (CNS) drugs can be tagged and tracked in vivo in a single animal to determine blood-brain barrier (BBB) permeability. Quantitative kinetic evaluation of drug candidates can be performed with PET, allowing calculation of relevant rate constants that describe tissue extraction, receptor-specific binding, nonspecific binding and/or enzyme turnover. Pharmacokinetic knowledge obtained from imaging enables continuous monitoring of the disposition of the drug candidate, not just snapshots of the plasma concentration of the unmetabolised component, which may have little relevance to the concentration of the drug candidate at the intended site of action. That is true of CNS drugs, where brain and plasma kinetics invariably diverge and for oncologic agents, where heterogenous tumor perfusion presents the lesion with an uneven or inadequate dose, not reflected in peripheral samples. Pharmacodynamic information, i.e., the effects of the drug candidate on the tissues, is also readily available through small animal imaging. Changes in blood flow critical to anti-angiogenic therapies can be assessed by PET, MR or US. Drug-drug interactions can be studied by radiotracers designed to probe the activity of multidrug resistance (MDR) pumps under the influence of MDR modulators, for example. All of that information can be used in an iterative fashion for structural refinement of lead compounds.

Phase I clinical trials consist of determining a safe dose of the drug candidate in healthy volunteers. Before that, i.e., in pre-phase I, radionuclide imaging has been applied in dose-finding exercises, particularly in CNS applications where receptor occupancy of drug candidates can be calculated [24]. Because only a small amount of mass is administered with radiotracers synthesized in high specific radioactivity, no pharmacologic effect from that administration results and doses as little as 1/1000 of the lowest initial dose in a phase I trial can be administered [6]. In phase II the drug candidate is administered to patient volunteers to evaluate efficacy and search for side effects. Effectiveness is further monitored in phase III, as is the presence of long-term side effects. Preclinical development takes an estimated 3.5 years while about 6 years are required for clinical trials needed to apply to the FDA for a new drug application (NDA). A further 2.5 years is required for that application to be approved (Fig. 1). In all, about one in 5,000 drugs reaches that stage, at a cost of up to $700 million.

Imaging endpoints included in clinical trials, such as the RECIST (Response Evaluation Criteria in Solid Tumors) criteria, rely on anatomic changes to assess the efficacy of antitumor drugs, with progression defined as a 40% increase in tumor volume [25]. But physiologic changes detected with molecular imaging techniques antedate anatomic changes and should be more sensitive in assessing efficacy. Accordingly PET is being applied increasingly for therapeutic monitoring, particularly for cancer, where new agents may be merely cytostatic, having a minimal effect on lesion size [26]. One problem in using physiologic endpoints in determining efficacy is the lack of standardization of techniques of data acquisition and analysis, which, in the case of clinical
PET, extend from measuring the standardized uptake value corrected for body surface area (SUV$_{BSA}$) to full kinetic modeling. Agents other than FDG, such as 3'-deoxy-3-\(^{18}\)F]fluorothymidine (FLT) [27], an agent to image cell proliferation, and MS-325 (AngioMARK) [28], a blood pool MR contrast agent, are beginning to see clinical use, the latter in phase III trials. Although those agents are able to be tested in humans directly, input from small animal imaging during early clinical trials can refine the imaging protocols and answer unforeseen questions related to pharmacokinetics, e.g., because performing animal studies is much more efficient. A new criterion for predicting efficacy of a drug candidate will be to see if the degree of modulation of an imaging probe in an animal model that is associated with activity is obtained with human imaging, rather than ensuring only that adequate plasma concentrations are achieved [2].

The relevance of rodent models of human disease is occasionally questioned because species differences in drug candidate metabolism, often by cytochrome-P450 enzymes, exist [29]. As mentioned above, knockout mice are always phenotypically heterogeneous, suggesting caution in extrapolation to human disease. Orthotopic xenograft models attempt to provide a more physiologic microenvironment for tumors but that microenvironment remains largely murine, and the utility of orthotopic models has probably been overstated except for select cases [30]. Nevertheless the rodent models provide the best first guess at drug candidate pharmacokinetics and effects, provided that correlation with standard biochemical markers is obtained and species differences are accounted for when necessary.

LOGISTICS OF SMALL ANIMAL IMAGING

Small animal imaging studies are currently not high-throughput procedures. An MR perfusion study of a mouse tumor, with preparation, takes about as long as the comparable clinical study. If live studies are intended, small animals must generally be anesthetized to undergo imaging. Anesthesia, whether inhalational or administered by injection (intraperitoneal or intramuscular), is an important confound in animal imaging experiments, particularly for imaging CNS and cardiovascular phenomena, where the effects of anesthesia on blood flow and metabolism are often greater than the signal from the underlying biology of interest. Creative efforts to image awake, mildly or unrestrained animals are underway, but the vast majority of studies employ anesthesia. The choice of anesthesia regimen depends on the underlying question. There are regimens that have less effect than others on vascular and metabolic changes that occur with brain activation, e.g., alpha-chloralose (injection) and nitrous oxide/isoﬂurane (inhalational). The degree of inhalational anesthesia can be controlled during an imaging study, representing a distinct advantage to anesthetics that are injected; however, use of volatile anesthetics requires expensive equipment and training. Mouse strains have varying sensitivities to anesthesia, usually uncovered empirically, that must also be taken into account [31]. Custom-designed, multimodality-compatible imaging chambers exist for small animal imaging, although these devices have not been standardized nor have they become commercially available. Details of small animal anesthesia induction and maintenance, physiologic monitoring, catheterization and assuring adequate warmth, including during imaging, have been addressed in detail previously [31-34].

Once adequate anesthesia and physiologic monitoring are assured, a new set of challenges arises, depending on the biological information sought and modality employed. For example, two major sources of error include motion and partial volume/spillover for MR and radionuclide applications, respectively. Cardiac gating becomes challenging in animals with heart rates of nearly 400 beats/minute that undergo high-resolution (< 0.03 mm\(^3\)) imaging, but stereoscopes developed for that purpose have been developed [35]. Partial volume correction and spillover of radioactivity in regions of interest (ROI) on PET images is only beginning to be evaluated in human PET studies, let alone in small animal imaging. Despite sophisticated gating mechanisms and monitoring, breathing can be erratic, in part due to the configuration of the mouse thorax; position of the animal becomes relevant during prolonged imaging sessions. Those and other challenges are detailed below in the context of the modalities that serve small animal imaging.

SMALL ANIMAL IMAGING IN DRUG DEVELOPMENT: EXAMPLES BY MODALITY

The same modalities available in the clinic are scaled down in dedicated devices to accommodate small animals. That holds true for all modalities, including some optical techniques. Scaling down of each modality to serve small animals is an important issue, because careful knowledge of the scaling factors involved, which are not necessarily linear, is necessary to assure an appropriate experimental design. The modalities are complementary in information, vary in anatomic and temporal resolution, sensitivity, cost and other factors, as previously described [36]. Table 1 synthesizes those factors as they apply to drug development. Several generalizations are possible: contrast agents enhance the utility of all modalities; CT and MR are used primarily for anatomy and pharmacodynamics; US is used for pharmacodynamics of vascular agents; and, optical and radionuclide agents image gene expression, enzymes, receptors and transporters. The sensitivities of the systems for detecting molecular events, of paramount importance in drug development, can roughly be described as: optical > radionuclide >> MR > US ≥ CT. Radiopharmaceuticals are the largest and most chemically diverse group of molecular imaging agents. All modalities are eminently translatable from small animals to the clinic.

COMPUTED TOMOGRAPHY (CT)

CT is the two- or three-dimensional reconstruction of x-ray data. Structures of different density, i.e., bone, soft tissue, fat and air, are resolved by x-ray imaging. The goal behind CT, as with all tomographic techniques, is to provide internal structure. Small animal CT scanners, which are commercially available [37], can play an important role in drug development by providing an anatomic context for the disposition of functional imaging agents. Mutual information algorithms have been developed to overlay anatomic and functional imaging information using CT and PET (Fig. 2).
Scanners that obtain anatomic and functional information concurrently, i.e., PET/CT devices, have been clinically available for two years, although no such device is yet available for small animal imaging. Small animal CT scanners produce images at resolutions comparable to those of MR imaging (50 µm), particularly with contrast administration [37]. Data acquisition takes anywhere from 5 to 30 min, depending on the level of resolution needed. Because of high anatomic resolution, CT can be used in phenotyping genetically manipulated animals. The radiation dose delivered for such a screening study is estimated to be on the order of 5% of the LD50/30 for mature mice, which is a significant value, suggesting that longitudinal study protocols must be carefully designed.

Small animal CT has been used to study lung tumors [38], bone mineral density during parathyroid hormone treatment [39] and vascular endothelial growth factor (VEGF) stimulation of bone repair [40], but its greatest contribution to drug development will be in studying the microvasculature, in analogy to MR. Iodinated contrast agents have been used in rodents to visualize the renal vascular tree and other aspects of the microcirculation [41]. Blood pool contrast agents consisting of iodine-substituted poly-L-lysine micelles [42] or iopromide-carrying liposomes [43], e.g., are being developed for small animals. High-resolution functional CT can be performed in rodents using a clinical scanner. Charnsangavej et al. [44] studied the response of murine mammary tumors, transplanted to Fischer rats, to SU-5416,

<table>
<thead>
<tr>
<th>Table 1. Small Animal Imaging Modalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modality</td>
</tr>
</tbody>
</table>
| X-ray computed tomography (CT) | • phenotyping
• vascular therapies (pharmacodynamics)
• lung tumor and bone disease models |
| Magnetic resonance Imaging | • phenotyping
• vascular therapies (pharmacodynamics)
• assessing cellular metabolism (pH, pO2, lactate, and other species -- pharmacodynamics)
• pharmacokinetics of isotopically labeled drugs
• cell tracking
• gene expression
• drug delivery
• receptor-based imaging (?) |
| Imaging (MRI) | • phenotyping
• vascular therapies (pharmacodynamics)
• assessing cellular metabolism (pH, pO2, lactate, and other species -- pharmacodynamics)
• pharmacokinetics of isotopically labeled drugs
• cell tracking
• gene expression
• drug delivery
• receptor-based imaging (?) |
| Ultrasonography (US) | • therapeutic monitoring (infection and cancer)
• gene expression
• cell tracking
• receptor-based imaging
• activatable probes for enzyme activity
• validation of radionuclide reporters
• protein-protein interaction |
| Optical | • pharmacokinetics (small molecules → macromolecule probes)
• pharmacodynamics
• gene expression
• cell tracking
• protein-protein interaction
• receptor-based imaging |
| Radionuclide | • planar gamma scintigraphy
• single photon emission computed tomography (SPECT)
• positron emission tomography (PET) |

Scanners that obtain anatomic and functional information concurrently, i.e., PET/CT devices, have been clinically available for two years, although no such device is yet available for small animal imaging.
an anti-angiogenic agent (Fig. 3). They reasoned that because anti-angiogenic therapy is cytostatic rather than cytotoxic, conventional means by which to measure tumor response, i.e., anatomic shrinkage, are irrelevant. With functional CT, quantification of blood flow (BF), blood volume (BV), mean transit time (MTT) and permeability surface (PS) parameters is possible. To validate those parameters they performed cine-CT and compared them to the findings on histological examination (vessel count). Surprisingly, there was no change in BF, BV and PS between treated animals and controls, but there was redistribution of the vasculature, with higher flow within the center of the treated tumors. That finding has important implications for access of chemotherapeutic agents to treated tumors, suggesting the need for combination therapy to supplement anti-angiogenesis. Because of the absence of radiation, exquisite soft tissue resolution, higher sensitivity to a wide variety of contrast agents and flexible operating parameters of MR, CT will likely remain secondary for dynamic vascular indications.
MAGNETIC RESONANCE (MR)

MR tissue characterization relies on the detection of water protons through the application of radiofrequency pulses to the animal in a magnetic field. Differences in the microenvironment of those protons between tissues determine the appearance of the image. The microenvironment might contain a higher density of protons or a chemical and physical structure that may be more or less permissive for rapid longitudinal (T_1) or transverse (T_2) relaxation of protons. MR imaging sequences can also be programmed to emphasize the ability of water to diffuse throughout the tissue, a functional aspect of the technique, as shown in equation 1, where S is MR signal intensity, $N(h)$ is proton density,

$$S = N(h) \star (1 - \exp(-TR/T_1)) \star \exp(-TE/T_2) \star \exp(-bD) \ [eq. 1]$$

and the remaining three terms indicate T_1 relaxation, T_2 relaxation and diffusion, while b is the diffusion gradient factor and D is the diffusion coefficient. Researchers dedicated the first two decades of MR imaging research to refining the acquisition of anatomic images by developing more efficient pulse sequences that delivered images of increasing soft tissue resolution while the last decade has been concerned with exploiting the functional capabilities of MR.

Applying small, specialized coils, high magnetic fields and high-powered gradients enables resolution on the order of 50 μm and even 20 μm for isolated organs for MR microscopy (Fig. 4). Most clinical MR imaging occurs in magnetic fields of 1.5 Tesla (T) whereas small animal imaging can be performed at 11.7 T and higher. The increase in magnetic field in going from humans to mice improves the volumetric resolution, for an imaging voxel, from 80 mm3 to approximately 7.3 mm3 [33]. Such high-resolution imaging lends itself perfectly to mouse phenotyping, but the functional aspects of MR imaging are of greater immediate relevance to drug development. The high magnetic fields available for small animal imaging also benefit MR spectroscopy (MRS), where spectral resolution is improved allowing more accurate quantification of chemical species within tissue.

Tumor Microenvironment

Most applications of small animal MR imaging to drug development are for antineoplastic agents, primarily because an emerging sub-field within functional MR research focuses on the physiology of the tumor microenvironment. Researchers in that new sub-field use MRS to assess tumor pH and oxygen status in addition to the metabolites that can be measured by proton and other nuclear (23Na, 31P, 19F, 13C) MRS [45]. Because of the heterogeneously and inefficiently perfused tumor milieu, tumors tend to be hypoxic and support an acidic pH. It is hypothesized that such a milieu promotes local invasion and metastases of tumors. Chemotherapy intended to halt those processes must therefore address those conditions. For example, weakly basic drugs such as the anthracyclines likely become compartmentalized within heterogeneous interstitial regions due to the low pH within tumors, detracting from their effectiveness [45]. The lack of adequate perfusion has important implications for the pharmacokinetics of antineoplastic agents, i.e., they may never reach their targets. Larger agents, such as therapeutic antibodies, are particularly at risk due to the suggested increased interstitial pressure within tumors that are already poorly perfused [46]. The low oxygen tension within tumors has negative implications for radiotherapy as well, which relies on the production of free radicals and other reactive species derived from oxygen upon interaction with ionizing radiation. The development of radiosensitizers may benefit from an understanding of the tumor microenvironment [47, 48].

Tumor hypoxia is measured by gradient echo MR techniques (GRE-MR) that are sensitive to small changes in magnetic susceptibility that occur in response to the presence of oxygen. Oxygenated hemoglobin (oxyhemoglobin) is nonparamagnetic, and will therefore exert no effect on a magnetic field, while deoxyhemoglobin is paramagnetic and will. Specifically, deoxyhemoglobin will cause a decrease in
signal intensity by shortening the apparent transverse relaxation time (T_2^*). Contrast is therefore generated according to a blood oxygen level dependent (BOLD) mechanism. Key to techniques that rely on BOLD to generate contrast is the necessity to compare a resting and an activated state. BOLD is the underlying mechanism for functional MR imaging (fMRI) that is used in the clinic for brain mapping. In addition to somatosensory stimulation or merely thinking, other activation paradigms involve pharmacologic challenges, which have utility outside of the CNS. Carbogen, a 95:5 mixture of oxygen and carbon dioxide, is used in tumor imaging to induce hyperoxygenation that can be detected by GRE-MR. Physiologic challenges, including the administration of vasoactive drugs, can then be studied with MR. Brain activation with pharmacologic agents has been described as pharmacological MRI (phMRI), and has been applied in humans to study the effects of analgesics and other centrally acting agents on blood flow [49, 50]. The assessment of hemodynamic changes evoked by diltiazem, a calcium-channel blocker, in a murine Ehrlich ascites tumor model is another example [51]. Diltiazem, by increasing tumor blood flow, is proffered as a radiosensitizer. Shaharabany et al. imaged the hepatocyte growth factor scatter factor (HGF/SF)-mediated activation of the Met tyrosine kinase growth factor receptor system \textit{in vivo}, using BOLD-MRI [52]. Met is a viable target for drug discovery because it is implicated in the pathogenesis of a variety of human epithelial cancers [53].

19F-MRI can also be used to study tumor oxygen tension due to the high solubility of oxygen in perfluorocarbon emulsions. That technique can be used to follow therapeutic interventions designed to increase oxygen delivery to tumors. Intracellular tumor pH is measured by the chemical shift changes of endogenous inorganic phosphate by 31P-MRS, often with the help of an indicator, 3-aminopropyl phosphonate (3-APP), by 1H-MRS, 19F-MRS, contrast-enhanced MRI or magnetization transfer [43, 54].

MR Spectroscopy/Spectroscopic Imaging

In terms of measuring absolute concentrations of various metabolites, it is only the endogenous metabolites such as choline, creatine, N-acetylaspartate, lactate, glutamate and several others that are in sufficient concentration (on the order of 1-10 mM) to be detected and imaged (MR spectroscopic imaging – MRSI [55]) with a reasonable degree of resolution using 1H-MRS (Fig. 5). It is the rare case when an exogenously administered small molecule (< 500 Da) can be interrogated and analyzed pharmacokinetically with MRS, because of the high concentration required, which often leads to pharmacological effects including toxicity. Nevertheless, the intratumoral conversion of 5-fluorocytosine to 5-fluorouracil has been studied in that fashion [56], as have the kinetics of 13C-glucose in cats, [57]. To predict the delivery of chemotherapeutic agents to tumors, Artemov \textit{et al.} [58] correlated the delivery of a standard MR contrast agent, gadolinium-diethylenetriaminepentaacetic acid (GdDTPA),

Fig. (5). 1H-MR Spectroscopy. Note the decrease in choline, a marker of cell turnover, in colon cancer xenografts in SCID mice after experimental (anti-vascular + bacteriolytic) therapy [courtesy: Zaver Bhujwalla, Johns Hopkins University].
with that of an isotopically labeled tumor differentiating agent, 13C-phenylacetaete. They found a high correlation between the delivery of the two agents, although retention did not correlate. That experiment has implications for using MR contrast agents that mimic the size, weight and lipophilicity of therapeutic agents to predict delivery of those therapeutic agents to the site of interest.

Perfusion Imaging

Perfusion MR imaging is a clinical technique useful for therapeutic monitoring in a variety of diseases that affect blood flow, including myocardial infarction [59], stroke [60], organ transplantation [61], and cancer, [62]. The response to pharmacological challenge can also be measured with perfusion MRI [63]. Perfusion can be measured using contrast enhancement (dynamic contrast-enhanced MRI – DCE-MRI) or through arterial spin labeling, where a bolus of ingoing blood is magnetically tagged as an endogenous contrast agent [64]. Pharmacokinetic models for describing the disposition of contrast agents such as GdDTPA have been derived [65, 66]. In addition to clinical application, perfusion MR can be used to uncover mechanisms of pathogenesis, e.g., in cancer. Using albumin-GdDTPA, a blood pool MR contrast agent, Bhujwalla et al. [67] studied a series of breast and prostate tumors of differing metastatic potential to demonstrate that areas of high vascular volume within the tumors were not spatially equivalent with areas of high permeability where tumor necrosis predominates, a finding with implications for the delivery of macromolecular therapeutic agents. That group has also used perfusion MR imaging and combined vascular volume/permeability maps to monitor the response of the MATLyLu rat model of metastatic prostate cancer to the angiogenesis inhibitor TNP-470 (Fig. 6). Redistribution of permeability to the surface of the tumor was noted upon treatment. Su et al. [68] used DCE-MRI to study the effect that gene therapy (e.g., IL-1-α) had on altering the vasculature of a rat C6 glioma model, and found that the changes in vascular volume preceded those in tumor volume. Evelhoch studied the effects of ZD6126 (N-acetylcocolchion-O-phosphate), a prodrug for N-acetylcocolchin, in murine adenocarcinoma C38. N-Acetylcocolchin disrupts the tubulin cytoskeleton of neendothelial cells causing vascular occlusion. They detected the spatial distribution of dose-dependent vascular effects of that agent that were apparent within 24 hours of single-dose treatment, with no change in tumor size (Fig. 7).

Diffusion-Weighted Imaging

Diffusion-weighted MR imaging (DWI) relies on the directionality of motion of water in tissue that can be detected upon using a motion-dependent MR pulse sequence. When appropriately-timed magnetic field gradients are applied to the sample, a diffusion-weighting term enters the equation describing signal detected in an MR study (equation 1). Diffusion of water through tissue is random, the speed and direction of which is dictated by the presence of barriers, such as macromolecules, cell membranes and cellular organelles. Being random, diffusion occurs isotropically; however, because of the organization of certain tissues, e.g., white matter tracts or sheets of tumor cells in the brain, diffusion may be anisotropic or directional. Clinically, DWI is used most frequently in conjunction with perfusion imaging in the context of acute stroke, where a mismatch between the spatial distribution of abnormalities on the two sets of images, i.e., larger perfusion than diffusion “defect”, might suggest therapeutic intervention (thrombolytics). DWI may contribute to tumor imaging in two ways: in the differentiation of infiltrating tumor from vasogenic edema and in tumor grading [69]. Chenevert et al. have recently reviewed the use of DWI in brain tumor monitoring, both in

Fig. (6). Vascular MR imaging. Triplanar view of 3D reconstructed maps of (a) vascular volume (b) permeability, (c) combined vascular volume and permeability and (d) hematoxylin and eosin stained sections of a MATLyLu tumor (volume 405 mm3) before (A) and after (B) treatment with TNP-470. Note peripheral redistribution of permeability upon treatment [Courtesy: Zaver Bhujwalla, Johns Hopkins University].
human subjects and small animals [70]. The underlying principle for therapeutic monitoring is that as tumors succumb to treatment, they become smaller as their cell membranes become permeable to water. Fewer barriers to water diffusion exist, so the apparent diffusion coefficient (ADC) will increase in effectively treated tumors. Changes in ADC are evident before changes in tumor volume detected by conventional means.

New Applications

The potential for functional MR techniques in drug development is further illustrated by a number of highly creative, new applications. Aspects of the hostile tumor microenvironment including decreased pH and oxygen tension can drive gene expression, evoking activation of genes necessary for cell survival under such conditions [45]. In particular, low oxygen tension upregulates expression of HIF-1α, which then dimerizes with HIF-1β to form a transcription factor that binds to downstream, specific hypoxia response elements (HREs) in DNA including the genes coding for VEGF and Glut-1. Raman et al. allowed PC-3 prostate tumors transfected with the HRE for VEGF to grow until the central core became hypoxic. Using an HRE-GFP construct they demonstrated activation of the HRE through optical imaging that was co-registered with vascular volume and permeability maps. The maps showed areas of low volume and high perfusion in the region of high HRE expression, as expected, since VEGF is believed to be a marker for vascular permeability [67].

Louie et al. used cleavable MR contrast agents to image gene expression in vivo [71]. In their scheme, the agent was synthesized in such a way to shield Gd from water, preventing its T₁-lowering (and signal enhancement) effect. Once in the vicinity of an enzyme of choice, in their case β-galactosidase, the agent was cleaved (hydrolyzed) in a site-selective process revealing Gd and therefore signal enhancement. That group has also developed calcium-sensing MR contrast agents [72]. Those agents are fraught with poor cellular penetrability and may have limited utility for probing intracellular events noninvasively; however, that hurdle may be overcome by synthesizing more lipophilic agents or agents linked to the HIV-1 Tat protein, which can effect rapid cellular penetration of macromolecular species [73].

MR is a relatively insensitive technique for detecting chemical species and receptors in vivo [74], with concentrations down to 10-100 µM detectable with relaxivity-based agents. A variety of methods to increase that sensitivity have been undertaken, including the use of contrast agents that have been functionalized with biotin-GdDTPA chelates [75], superparamagnetic, iron-containing particles, magnetodendrimers [76] and saturation transfer of cationic polymers [77]. Those techniques have been used in imaging gene expression and cell tracking in small animals. In preliminary studies Artemov et al. demonstrated receptor-specific MR imaging at HER-2/neu sites in tumors overexpressing that protein using biotin-GdDTPA linked to anti-HER-2/neu (herceptin)-avidin (Fig. 8). Signal amplification is present in that system because there are several GdDTPA per monoclonal antibody (MoAb). MoAb-mediated MR imaging may be difficult to scale up from mice to larger animals due to the increasing difficulty of saturating the target sites as the species size increases [74].
Signal amplification is the hallmark of Weissleder’s method to image the expression of the transferrin (Tf) receptor gene with monocrystalline iron oxide particles conjugated to Tf (Tf-MION) [78, 79]. In that instance tumors transfected with an engineered Tf receptor internalize Tf-MION while those without the gene do not. The receptor was engineered such that the normal mechanism of down-regulation of Tf internalization upon Tf binding was removed. Since the Tf receptors are recycled to the cell surface continually, many Tf-MION conjugates may be internalized, amplifying the (negative) signal. That represented the first example of MR imaging to visualize gene expression. As with other imaging reporter systems to be discussed, the significance lies in its generalizability, i.e., that one may link the promoter of a gene of interest to expression of Tf receptor, which can be imaged, effecting an indirect measure of expression of the desired gene (Fig. 9). The reporter protein can be internal, such as the enzyme HSV1-TK (used for PET), or it can be on the cell surface, such as Tf receptor (MR) or the dopamine D2 receptor (PET). In those examples the reporter probes can be 9-[4-[18F]fluoro-3-(hydroxymethyl)butyl]guanine (18F-FHBG), Tf-MION and 18F-fluoroethylspiperone, respectively. Dual modality reporter systems, e.g., that produce GFP and HSV1-TK concurrently, have been developed for cross-modality correlation [80].

Therapeutic agents that rely on cell tracking will benefit from being able to image cell migration in small animals. Initial applications of that technology are in immunological and transplantation research and in following the course of stem cell therapies to reconstitute aspects of the CNS [81-85]. Bulte has used that technique to follow oligodendrocyte progenitor cells transplanted within the rat spinal cord in an experimental model of multiple sclerosis (Fig. 10) [86].

Goffeney has developed a new way to enhance the sensitivity of MR imaging by factors of 5×10^5 using a technique called amide-proton transfer imaging (APT-I) [77]. The rationale for the development of APT-I was to be able to image directly cationic polymers that can be used as vectors for gene therapy. The technique can be extended to any molecule that contains a large number of amide protons, such as might be present in new blood pool MR contrast agents or drug delivery vehicles. APT-I takes advantage of the exchangeability of water and amide protons in solution (or tissue). As stated above, the MR signal emanates from water protons. One may indirectly gauge the concentration of species that are in exchange with those protons if they are in sufficient number and resonate at the appropriate frequency. The amide protons of poly-L-lysine are optimal for demonstration of the technique. By irradiating a sample containing poly-L-lysine, which contains 2,332 amide protons, at the amide proton frequency, one may decrease the signal intensity of the image by transferring the saturation of the N-H signal to H-O-H, which is imaged directly. A preliminary application of that technique to study ischemia in the rat brain at 3 T is shown in Fig. 11.

![Image](image-url)
ULTRASOUND (US)

US relies on the emission and detection of sound waves that are altered by traveling through tissue. Different tissues have different acoustic signatures. Imaging with US has become a mainstay of rapid clinical diagnosis. Its application to small animals has not been as extensive as the other modalities, nevertheless recent advances in US biomicroscopy, i.e., high-frequency (20-200 MHz) imaging, targeted contrast agents and US-mediated drug delivery promise to enhance the use of US in small animal imaging in the future [87]. As with CT and MR, the majority of US applications to drug development will be in detecting changes in the vasculature during therapy with, e.g., anti-angiogenic agents. An advantage that US has over those other modalities in that regard is the fact that US contrast agents remain entirely

Fig. (9). Gene reporter/probe concept. Transcription of the reporter protein is linked to that of a gene of interest. The reporter may be intracellular (e.g., an enzyme such as HSV1-TK) or it may be on the cell surface (e.g., Tfr). The degree of transcription of the gene of interest (product not imageable) can be inferred because it and the gene encoding the reporter protein (product imageable) are transcribed in a 1:1 stoichiometry.

Fig. (10). Stem cell tracking. Magnetically labeled oligodendrocyte progenitors are tracked over time in rat spinal cord (arrows) [86].
intravascular whereas the CT and MR agents tend to leak into the interstitium. US contrast agents are therefore true intravascular agents, simplifying to one compartment the kinetic modeling needed to describe their transit. Another major advantage of US is the capability of real-time imaging, where images may be updated every $1/30^{th}$ of a second [88].

Biomicroscopy

Recently small animal US has been used in phenotyping mice that will be used in the production of knockout strains with cardiovascular anomalies [89]. Doppler US at clinical frequencies (2-10 MHz) is used to detect vascular flow in large vessels, e.g., carotid artery, but is not useful for detecting microvascular changes that occur during tumor angiogenesis. The diameters of the vessels involved in angiogenesis are < 100 µm, necessitating US biomicroscopy. Mouse tumors have been studied with that technique, showing vessels < 20 µm in diameter with a velocity resolution > 1 mm/sec [88]. Probes for biomicroscopy have been developed recently specifically for use in mice, the first applications of which are to study the developing mouse [90].

Contrast-Enhanced US

Contrast-enhanced Doppler US can be used in monitoring anti-angiogenic therapy. Iordanescu et al. [91] treated mice engineered to produce prostate tumors de novo with vectors producing the Flk1 receptor, an anti-angiogenic protein. They used color Doppler US (15 MHz) and a microbubble-based US contrast agent (6 µm) to study tumor response. Prior to using US, the only way to assess orthotopic abdominal tumors in their models was via laparotomy. They demonstrated a decreasing pixel density of the intravascular agent with progression of therapy, indicating response. Sadlowski et al. also used contrast-enhanced US to study anti-angiogenic therapy (Sugen) in a rat mammary tumor model, similarly noting a decrease in blood flow with treatment (Fig. 12). Contrast-enhanced US can be performed with either passive or active targeting [92]. Passive targeting is nonspecific and relies on the diameter of the agent to enable its accumulation at one point in the vasculature or within phagocytic cells. Indications for passive targeting include inflammation, sentinel lymph node detection and the evaluation of tumors of the reticuloendothelial system (liver and spleen). Active (specific) targeting employs adhesion ligands, such as antibodies and peptides, to effect binding in a site-selective fashion. Thrombus is a target of active agents [93]. With active agents, US imaging enters the realm of targeted drug delivery. US bubbles can be fragmented at will to deliver therapeutic agents at their intended site of action, providing a local, relatively nontoxic but concentrated dose (Fig. 13). For example, Unger et al. [94] have produced acoustically active lipospheres containing paclitaxel, a tubulin-stabilizing, antineoplastic agent. Because only one perfluorocarbon-based US contrast agent is approved for clinical use, all experiments involving targeted agents employ small and medium-sized animals.

OPTICAL

Small animal optical imaging is emerging as a versatile tool for therapeutic monitoring of primary tumors, metastases and infection. It can also be used in cell tracking and in imaging gene expression. Small animal optical techniques are essentially adaptations of in vitro reporter systems to living animals. Like US, optical imaging provides an essentially instantaneous readout on portable, inexpensive equipment. Several optical techniques, including optical coherence tomography (OCT) [95] and near-infrared (NIR) spectroscopy [96] have made their way into the clinic for specific indications including the interrogation of superficial

Fig. (11). APT-I imaging of ischemia in rat brain. Note signal dropout at ischemic focus. TTC stains for ischemic regions [178].
structures such as cervix and breast tissue, respectively. NIR has recently been combined with MR in a hybrid system to provide both structural and functional information about breast cancer in the clinic [97].

But the real benefits to drug development lie in the small animal optical imaging techniques of fluorescence imaging, including fluorescence-mediated tomography (FMT), and bioluminescence imaging (BLI). Fluorescence occurs by excitation of the tissue with one wavelength of light and collecting the emitted light, of a longer wavelength, during emission. Charge-coupled-device cameras are used to collect emitted fluorescence. BLI occurs when energy is liberated from a high-energy substrate (luciferin) by a luciferase enzyme upon contact of the two species. The optical techniques are the most sensitive modalities in molecular imaging, with subattomolar (<10^{-18}) single-event detection possible in vitro for BLI [98]. In practical terms, as few as 100 cells can be detected by BLI in subcutaneous tissues, with 10^6 cells detectable at a depth of 2 cm [20]. Interference from hemoglobin limits depth of penetrance, however the absorbance of hemoglobin decreases significantly at wavelengths > 600 nm, i.e., within the NIR range. Consequently, specific probes for fluorescence imaging are being designed to emit in the NIR [99], and red-shifted mutants of green fluorescent protein (GFP) are sought [100].

Fluorescence Imaging

Fluorescence imaging can be applied in several ways to drug development, including: transfection of experimental tumors [101] or bacteria [102] with a light-emitting protein, e.g., GFP, that can subsequently be followed for response to chemotherapeutics after transplantation to small animal hosts; visualization of transgene expression in selected organs of suitable animal hosts after transfection with, e.g., adenoviral GFP [103] (GFP expression is linked to expression of a gene of interest, as discussed above for the Tf receptor); development of transgenic mice that express GFP in all cells of a particular lineage of interest, e.g., oligodendrocytes [104]; the use of protease-activatable probes [105]; and, receptor-based fluorescent species, e.g., [106]. The response

Fig. (12). US imaging of anti-angiogenic therapy. Decreased flow noted after 15 days indicates response [courtesy: Amy Sadlowski, University of California, Davis].

Fig. (13). Fragmentation of an acoustically active liposphere [courtesy: Kathleen Ferrara, University of California, Davis].
of an *E. coli*-GFP construct to kanamycin treatment is depicted in Fig. 14 [102]. In analogy to molecular beacons used to isolate oligonucleotides *in vitro* [107], protease-activatable probes emit NIR light upon contact with an enzyme that cleaves them, separating the fluorophor and quencher moieties designed into them. That technique can measure enzyme activity important in certain diseases, such as cathepsins in cancer [108] and atherogenesis, [109]. GFP-based gene expression reporters have been used to validate the radionuclide reporter systems in a dual modality paradigm [80].

BLI

The main advantage of BLI over fluorescence imaging is that it relies on an internal light emitter without competing fluorophors. Consequently there is very little background emission. Administration of an exogenous substrate, luciferin, in reasonably high doses (50 mM) suggests that this technique will be restricted to animal use. Probe development is less flexible for BLI than for fluorescence imaging, although many advances in BLI are occurring, including the assay of protein-protein interaction and dual reporter strategies [20]. Uses of BLI to date have been in therapeutic monitoring of tumor treatment and infection as well as in immune cell tracking. Ross et al. [110] were able to use BLI to demonstrate the efficacy of 5-fluorocytosine therapy in tumors transfected with the yeast cytosine deaminase (yCD) gene.

RADIONUCLIDE

Currently the molecular imaging techniques that employ radiotracers are the most sensitive that are readily translatable to the clinic. For drug development radionuclide imaging has received the most attention, and a professional organization exists promoting industrial-academic collaboration in this enterprise (the Society of Nuclear Imaging in Drug Development, SNIDD). Among the modalities, radionuclide imaging was first that employed functional and molecular imaging because nuclear medicine has always employed molecular probes of varying size and function. The recent marriage of the radionuclide techniques with other modalities, most notably optical imaging, the mapping of the human genome and the development of high-resolution small animal PET and SPECT systems has brought about a surge in new possibilities for using radionuclide techniques in drug development. Almost any drug candidate can be labeled. Key is the ability to determine which candidates are worth the often considerable effort.

The three major drawbacks to the radionuclide techniques are the use of radioactivity, relatively poor spatial and temporal resolution and the expense. The equipment used for radionuclide imaging, particularly PET, is expensive if novel probes (other than FDG) are to be synthesized. The expertise in developing new PET probes is high, but the payoff is also high if knowledge about a specific molecular mechanism is critical to a drug development effort. No other modality has the sensitivity or synthetic flexibility in terms of probe

Fig. (14). Fluorescence imaging of antibiotic treatment. The mouse treated with kanamycin 6 hrs after intraperitoneal injection of *E. coli*-GFP survived (C and D) whereas the untreated mouse (A and B) did not [102].
development to interrogate specific cellular pathways and signal transduction cascades, although the optical techniques may prove viable here as well.

Radionuclide imaging can be performed with gamma scintigraphy and planar imaging, SPECT or PET. The resolution and anatomic detail of the device used should be matched to the biological question posed. Planar devices can be perfectly good for assessing BBB permeability of a radiopharmaceutical, for example. When combined with x-ray imaging, planar scintigraphy can be used to good advantage in cell tracking (Fig. 15).

The relative advantages and disadvantages of SPECT and PET have been debated elsewhere [5], but can be summarized as follows: in general, SPECT enables imaging of biological processes with long half-lives because of the longer physical half-lives of the tracers, has more readily available tracers, employs less expensive equipment and has no theoretical maximum in resolution. PET employs physiologic tracers, i.e., chelation chemistry is not required, the tracers can be identical to the drug candidate to be tested and it lends itself easily to quantification. Commercial packages are now available for tracer kinetic modeling of the more common radiopharmaceuticals. The PET principle relies on certain radionuclides achieving stability by emitting a positron (positive electron) that collides with an electron producing two 511 keV annihilation photons at an angle that approximates 180°. The coincidence of their arrival at opposed detectors marks the recorded event, with various reconstruction algorithms employed to generate a tomographic image. A schematic of a small animal PET ring is shown in Fig. 16 and a small animal PET device, the ATLAS (Advanced Technology Laboratory Animal Scanner), is depicted in Fig. 17.

Instrumentation

As mentioned above, in principle, the resolution of SPECT imaging with pinhole collimation can be reduced without limit at the cost of sensitivity and/or field-of-view (FOV). That contrasts with PET, in which the positron range and the photon non-colinearity effects intrinsically limit further improvements in resolution. Beekman et al. [111] have recently developed a gamma camera that employs micro-pinholes to obtain a spatial resolution of as high as 186 µm using a tracer containing iodine-125. The inherently inefficient mechanical collimation of single photons, however, makes the sensitivity unavoidably low. Long acquisition times and large amounts of injected dose are necessary. The large doses required can violate the assumption of steady state in tracer distribution during the acquisition of a complete set of tomographic projections for some tracers.

![Fig. (15). γ-Imaging of ¹¹¹In-labeled ex vivo purified CD8 T cells in mice. Activation of T-cells causes increased lung retention and less bowel excretion due to the increased expression of adhesion molecules [courtesy: Mark Williams, University of Virginia].](image-url)
Fig. (16). The NIH ATLAS small animal depth-of-interaction (DOI) PET scanner with LGSO/GSO phoswich detector modules [courtesy: Michael Green, NIH Clinical Center].

Fig. (17). The NIH ATLAS small animal PET scanner. A microCT device (ImTek, Inc., Knoxville, TN) is present in the background [courtesy: Michael Green, NIH Clinical Center].
The increased amount of injected dose can induce a pharmacologic response and, depending on the specific radioactivity (GBq or mCi/µmol) of the tracer, the radiation absorbed dose received by the animal can cause radiation damage, precluding longitudinal investigations [112]. Limits on injectable dose are also present in small animal PET, as detailed below. Another drawback to SPECT is the inability to perform true dynamic imaging with rotating gamma cameras. Despite those limitations in sensitivity and in dynamic scanning ability, the use of SPECT for small animal imaging will increase since retro-fitting human scanners with specially designed micro pinhole collimators is reasonably easy though suboptimal [113-115] (Fig 18). A quantitative study of dopamine transporters in the mouse brain was recently reported using a commercial triple-headed gamma camera equipped with custom-made pinhole collimators [112]. Dedicated animal SPECT systems are under development. LumaGEM A-SPECT, developed by Gamma Medica Inc. (Northridge, CA), is a commercially available dedicated animal pinhole SPECT device. The sensitivity, i.e., percentage of useable detected events, of the camera measured with the 3-mm aperture is 0.07% at 2 cm off-axis, and drops to 0.02% at 4 cm. The spatial resolution of the reconstructed images was on the order of 1.25 mm for images acquired at a radius of rotation (ROR) of 2.4 cm with a 1 mm aperture and even higher for smaller ROR and aperture sizes [116, 117].

In the development of new high-resolution scanners, the goal of PET resolution is 0.5 mm, with submillimeter imaging already demonstrated for at least one system [118]. Table 2 outlines distinguishing features of the small animal PET scanners produced to date. The most widely available dedicated animal PET scanners are those developed by University of California Los Angeles (UCLA) Crump Institute and Concorde MicroSystems Inc. (Knoxville, TN, USA), i.e., the microPET devices. By inheriting the fundamental design of the original UCLA system, Concorde MicroSystems Inc. has commercialized microPET R4 (for rodents) and P4 (for primates) in which some design modifications were made to reduce the overall cost and account for practical manufacturing issues [119, 14]. By increasing the axial FOV, the sensitivity of P4 has been raised to 1.43%, which is about a threefold improvement over the UCLA prototype microPET [119], but resolution

![Fig. (18)](image-url) Pinhole SPECT. System is based on a conventional GE 400 AC LFOV camera and a pinhole collimator with interchangeable pinhole apertures. A small animal can be rotated in front of the pinhole aperture for acquisition of projection data from different angular views [courtesy: Benjamin Tsui, Johns Hopkins University].
remains at or below 2.0 mm. The sensitivity of R4 is known to be nearly 1/3 greater than that of the P4 system. ATLAS is a dual-layer phoswich PET scanner developed at the National Institutes of Health (Bethesda, MD), which has depth of interaction (DOI) capability, enabling increased sensitivity. Spatial resolution at the center of ATLAS is 1.8 mm. Measured absolute sensitivity is 1.8%. Currently many groups are developing dedicated small animal PET scanners in addition to the two detailed above. Reviews of this field have recently appeared [12-14, 120].

Clinical PET has been used in drug development for applications in the CNS, and more recently, oncology. Those are generally quantitative PET studies in which dose finding is undertaken for CNS applications by performing drug candidate receptor occupancy measurements, and the pharmacokinetics and pharmacodynamics of new chemotherapeutic agents are determined. As mentioned above, useful information can be obtained when performing small animal PET on clinical systems, but likely not for animals smaller than rats, i.e., mice. Fig. 19 depicts a series of images from a rat with an RMT breast tumor xenograft. Although the development of a necrotic central core can be appreciated over time, little quantitative information can be extracted from such images. Images on the ATLAS scanner, for example, are of appreciably higher resolution providing the sense that one can be to quantify radiotracer uptake in the small ROIs in rodents.

Receptor-Based Imaging – Challenges

Many reviews of the criteria for developing agents to image low-capacity, high-affinity sites such as receptors, transporters and enzymes have appeared [74, 121-123]. One point to emphasize, however, is that despite the superficial similarity between developing imaging agents and drugs, the two processes are much different. The reason for that is that an imaging agent must clear from regions other than the ROI during the time course of an imaging study \textit{in vivo}, while the biodistribution of a drug is of little consequence, as long as

Table 2. Small Animal PET Scanners

<table>
<thead>
<tr>
<th>Name</th>
<th>Manufacturer</th>
<th>Ring diameter (cm)</th>
<th>Transverse FOV (cm)</th>
<th>Axial FOV (cm)</th>
<th>Absolute sensitivity (Energy window)</th>
<th>Spatial resolution (mm) (Reconstruction Method)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>microPET</td>
<td>UCLA</td>
<td>17.2</td>
<td>11.25</td>
<td>1.8</td>
<td>0.56% (250-650 keV)</td>
<td>1.8 @ center, 2.0 @ 3 cm (3D FBP)</td>
<td>[166]</td>
</tr>
<tr>
<td>microPET-P4</td>
<td>Concorde MicroSystems Inc.</td>
<td>26.0</td>
<td>19.0</td>
<td>7.8</td>
<td>2.25% (250-750 keV)</td>
<td>1.8 @ center, 3.0 @ 4 cm (FORE+2D FBP)</td>
<td>[119]</td>
</tr>
<tr>
<td>microPET-R4</td>
<td>Concorde MicroSystems Inc.</td>
<td>14.8</td>
<td>10.0</td>
<td>7.8</td>
<td>~ 3% (250-800 keV)</td>
<td>1.8 @ center, 3.0 @ 4 cm (FORE+2D FBP)</td>
<td>[119]</td>
</tr>
<tr>
<td>Quad-HIDAC</td>
<td>Oxford Positron Systems</td>
<td>17.0</td>
<td>17.0</td>
<td>28.0</td>
<td>1.8% (No energy window)</td>
<td>1.0 @ center (3D OSEM) 0.7 @ center (ROPLE)</td>
<td>[118, 167]</td>
</tr>
<tr>
<td>ATLAS</td>
<td>National Institutes of Health</td>
<td>11.8</td>
<td>6.0</td>
<td>2.0</td>
<td>1.8% (250-650 keV)</td>
<td>1.8 @ center, 2.5 @ 3.0 cm (FBP) 1.5 @ center (3D OSEM)</td>
<td>[168, 169]</td>
</tr>
<tr>
<td>Tier PET</td>
<td>Univ. of Julich</td>
<td>16-58</td>
<td>4.0</td>
<td>4.0</td>
<td>0.32% (230 keV+)</td>
<td>2.1 @ center (MSRE+2D ML-EM)</td>
<td>[170]</td>
</tr>
<tr>
<td>YAPPET</td>
<td>Univ. of Ferrara</td>
<td>10-15</td>
<td>4.10</td>
<td>4.0</td>
<td>1.7% (50 keV+)</td>
<td>1.8 @ center ~ 1.5 cm (3D Backprojection Filtered)</td>
<td>[171]</td>
</tr>
<tr>
<td>VUB-PET</td>
<td>Univ. of Brussels</td>
<td>20.0</td>
<td>11.0</td>
<td>5.2</td>
<td>3.0% (No energy window)</td>
<td>2.6 @ center, 3.8 @ 2.5 cm (FORE+2D FBP)</td>
<td>[172]</td>
</tr>
<tr>
<td>MGH PET</td>
<td>Massachusetts General Hospital</td>
<td>12.0</td>
<td>N.A.</td>
<td>0.45</td>
<td>0.08% (150 keV+)</td>
<td>1.2 @ center, 1.7 @ 2.5 cm (2D FBP)</td>
<td>[173]</td>
</tr>
<tr>
<td>IndyPET-II</td>
<td>Indiana Univ.</td>
<td>N.A.</td>
<td>23.0</td>
<td>15.0</td>
<td>0.90% (N.A.)</td>
<td>2.5 @ center, 3.5 @ 10 cm (SSR+2D FBP)</td>
<td>[174]</td>
</tr>
<tr>
<td>Sherbrooke PET</td>
<td>The Sherbrooke Univ.</td>
<td>31.0</td>
<td>11.8</td>
<td>1.05</td>
<td>0.5% (250-700 keV)</td>
<td>2.1 @ center, 2.4 @ 1 cm (2D FBP)</td>
<td>[175]</td>
</tr>
<tr>
<td>MAD-PET</td>
<td>Technischen Univ. Munchen</td>
<td>8.6</td>
<td>6.8</td>
<td>0.2</td>
<td>0.035% (450 keV+)</td>
<td>2.3 @ center, 2.3 @ 1.4 cm (list-mode PWLS)</td>
<td>[176]</td>
</tr>
</tbody>
</table>

its binding to non-target sites is nontoxic while maintaining activity at the target. That is a great challenge to imaging development and a reason for the failure of many.

Receptor-based tracer development has long been the unique domain of radionuclide imaging, mainly because of the high sensitivity of PET (nM to pM). Receptor-based agents enable either direct (labeled drug) or indirect (receptor occupancy) pharmacokinetic determination of drug candidates. Scaling that process from humans to small animals, even with new high-resolution scanners, is no easy task. Quantitative treatments of that scaling have been undertaken [124], but the main principles will be covered here. First, one must realize that even with dedicated animal scanners the amount of tracer given to an animal must, in general, be comparable to that given to a human. That is because the resolution voxel for the animal is much smaller than that for the human but the size of the same amount of tracer must be delivered to that voxel for the statistical precision of measurement of activity in that voxel to be the same as for the human. Derivative from this is the issue of the need for very high specific activities for receptor-based radiotracers given to small animals. Since the same amount of radioactivity in the human and animal voxels must be the same, the same degree of mass must be present in the injection. If a PET study involves a radiotracer (MW = 500 Da) at 37 GBq/µmol (1,000 Ci/mmol), for a 70 kg human receiving 370 MBq (10 mCi) of radioactivity, that means a mass load of 7 x 10^-5 mg/kg. For a mouse, which is 3,500 times less massive than a human, the mass load is 0.25 mg/kg, which may be enough to occupy > 5% of the intended receptor sites, invalidating the tracer principle, particularly for high-affinity (K_d < 1 nM) ligands.

Other potential limitations to scaling quantitative PET studies down to mice exist, and include the need for attenuation and scatter correction, correction for partial volume effects and the ability to obtain an arterial input function for full kinetic modeling. The probability that both of the emitted photons travel without scattering to the detectors is

\[P = \exp(- \int_0^L \mu(x) \, dx) \]

[eq. 2]

where \(\mu \) is the 2D function of linear attenuation coefficients, and \(L \) is the path corresponding to line of response (LOR) for each detector pair. Assuming a uniform attenuation coefficient of 0.097 cm\(^{-1}\) (the attenuation coefficient for water and 511 KeV photons) and length of photon fly path in the body of a rat and mouse to be 5 cm and 3 cm, respectively, approximately 40% and 25% of LOR, respectively, will be lost due to attenuation. However, that does not mean that such a count difference between the deep tissues and the surface of the object will appear in the reconstructed images since the emitted photons from the surface also undergo attenuation through the animal. There is actually a 10-15% difference in counts between the center and peripheral regions when measured using a uniform cylindrical phantom with ~5 cm diameter. As in the clinic, a transmission scan can correct for these errors, particularly for imaging deep structures such as orthotopically-placed tumors. Image coregistration with CT images by retrospective matching or simultaneous acquisition is expected to provide a more reliable way of attenuation correction in small animal PET [126, 127].

Although the spatial resolution of animal PET scanners lies between 1-2 mm, partial volume effects (PVE) will result in errors in the true count estimation due to the small size of the ROI. A priori knowledge of the 3D shape and size of the structures determined by image co-registration with CT, MR or ultrasound images is required to correct for PVE [128-131]. Movements of animals or organs are another source of PVE besides the finite resolution of the cameras. Use of devices to restrict the movement of animals, such as a head holder, is required. Electrocardiography and/or respiratory gating can be used to minimize the effects of organ movements [132, 133]. Flexibility in data acquisition, such as listmode acquisition, can also contribute to off-line correction for motion. Correction for PVE can also be incorporated directly into the model used to describe dynamic studies [134-136].

Dynamic PET measures radioactivity over time such that time-activity curves (TACs), delineating tracer uptake and clearance, can be obtained. TACs must be fitted to a mathematical model to describe relevant kinetic parameters of the ligand, i.e., clearance from plasma to tissue (K₁) and vice versa (k₀) and receptor-specific binding (k_r). Tracer kinetic modeling requires the arterial blood input function and correction for the presence of metabolites, which may overlap with the ROI. Radionuclide techniques cannot distinguish between chemically different radioactive species. The input function and blood metabolites are acquired by sampling the arterial or arterialized venous blood in human studies, but that luxury is not readily available in studying...
rats and particularly mice [137]. Total blood volume of a rat and mouse is 20 mL and 2.5 mL, respectively, and withdrawal of no more than 10% of total blood is recommended within an hour [14]. Recently, successful application of an advanced blood withdrawal technique to various tracers has been reported in which the arterial blood samples were acquired using catheters placed in the common carotid artery of mice, and metabolites were measured using micro-columns [138, 139]. Automated micro-sampling systems dedicated to small animal imaging have also been developed [140]. Despite those advances in micro-sampling, such direct sampling techniques are technically challenging and difficult to perform repetitively. As the axial FOV of animal PET scanners has been extended and spatial resolution improved, use of image-derived input function from the cardiac chambers or major arteries is gaining use. Various multivariate analysis methods, which have been successfully applied to humans or large animals [141-143] are currently under consideration [144]. Another practical solution for some tracers is use of a population-based, standardized input function, which has been extensively investigated for human PET studies with FDG [145, 146]. Assuming that the shape of the input function is the same across subjects, which is quite reasonable for rodents, except for genetically altered strains, an individual input function can be obtained by calibrating the standardized input function with a small number of blood samples, body weight or body surface area.

The reference tissue model for the estimation of binding potential [147, 148] has been used to avoid the use of arterial blood samples in neuroreceptor studies. In that method, the tissue-time activity curve of a region lacking specific binding of the ligand (reference tissue) is used as an indirect input function. Those methods should be, however, carefully evaluated for each radioligand before routine use, since reference regions may not be present for each radioligand.

Applications of Small Animal PET

Studies employing small animal PET to date have not been quantitative in the sense that receptor occupancy, binding potentials (proportional to receptor density) or parametric maps have not been generated. Such quantification will be necessary for small animal PET to see its full potential and replace primates, e.g., in drug development applications. Nevertheless, many important questions can be answered presently. Driving small animal PET has been the desire to image gene expression. That has been reviewed in many recent publications [71, 78, 149-152] but an example germane to drug development is presented here. Using the PET reporter-probe system HSV1-TK/\(^{124}\)I-FIAU (FIAU = 2'-fluoro-2'-deoxy-1-beta-D-arabinofuranosyl-5-[\(^{124}\)I]iodouracil) Mayer-Kuckuk et al. [153] demonstrated that cells exposed to antifolates show a rapid increase in dihydrofolate reductase (DHFR) activity (Fig. 20). That is an

![Fig. (20). Imaging Endogenous DHFR Induction. Antifolate treatment (TMTX) upregulates DHFR in panel A. Inset is the heart [153].](image-url)
example of drug-induced modulation of gene expression and can be used to test the effectiveness of different therapies that act through DHFR.

Hauben et al. [154] used small animal PET to assess the effectiveness of \(^{18}\)F-labeled-RGD peptides for imaging alpha(v)beta3 integrin, an adhesion receptor, which will be useful in monitoring vascular therapies. Small animal PET has proved useful for indications in the CNS, including comparing \(^3\)H-raclopride uptake in dopamine D2-receptor deficient mice (PET phenotyping) [155], evaluation of traumatic brain injury [156], brain activation [157], neural repair [158] and in studying a rat model of Huntington’s disease [159]. Applications in cardiology include imaging cardiac reporter genes [160] and study of myocardial flow defects in rats with FDG [161]. Cell tracking [162] and protein-protein interactions [21] have been studied with small animal PET. Rodent imaging is beginning to be used in radiopharmaceutical development [163], which will likely be among its most important contributions. Small animal PET will streamline development of radioprobes, which can then be taken into the clinic for continued impact on drug development.

PERSPECTIVE

Rapid scientific advances have characterized molecular imaging and small animal imaging research over the last five years, but substantial challenges remain. From a technical standpoint, the development of small animal imaging devices, particularly for radionuclide applications, has not yet reached the detection limit, i.e., further improvements in sensitivity and resolution are forthcoming, although they will be incremental. Other technical challenges include: timely processing of the vast amounts of data generated by animal studies (one high-resolution mouse study can generate 75 MB of data [36]), particularly if phenotyping or other high-throughput uses of the technology are anticipated; careful validation of the imaging findings with time-tested in vitro studies, particularly for gene expression imaging; making the appropriate choices among the many available targets uncovered after sequencing the human genome; and, in the synthesis of suitable probes for those targets. Synthetic chemistry capabilities remain at a premium in imaging research, an area where increased partnership with the pharmaceutical industry could help. In that regard pharma might consider integrating functionality into their drug candidates that will enable them to provide imaging precursors as well as therapeutic agents. Availability of potential imaging agent precursors among the large structural databases of pharma could be pursued more systematically by imaging centers, provided issues regarding intellectual property can be adequately addressed. Many good drugs make poor imaging agents but some poor drugs, shelved by pharma, might be modified into excellent imaging agents.

Sharing intellectual property is not the only non-technical challenge facing molecular imaging research. Gene therapy, one of the target areas of molecular imaging research, is in its infancy and has experienced several setbacks, most recently with the possibly related development of a leukemia-like illness after what appeared to be a success in treating severe combined immunodeficiency disease (SCID) [164]. Also, the specific targets promised by the human genome project, each of which with the potential of an equally specific imaging agent, may not affect many people and therefore may be of limited attractiveness to pharma for therapeutic development. However, just as the Orphan Drug Act of 1983 has been implemented to address that issue, the NCI has implemented several initiatives to enhance the development of imaging agents, including the Development of Clinical Imaging Drugs and Enhancers (DCIDE) program [165].

Deeper understanding of disease processes invariably leads to more specific, less toxic therapy. Patients can now be screened genetically and segregated on that basis before beginning what could be an unnecessary regimen for someone with their genetic composition. Molecular imaging research, initially undertaken in small animals, has been aligned with important goals in therapy, particularly in cancer research, and incorporated into small animal imaging research design has been with a view of translation to the clinic. Initial clinical applications of this body of work will likely involve cell tracking, using radionuclide techniques, but the long-term applications will extend to providing imaging phenotypes for patients, rendering large-scale screening processes obsolete. Drug development will benefit not only through cost savings at many pre-clinical and clinical steps, but also by improving the efficiency of research programs in pharma, which will be free to tackle more feasible and relevant targets.

ACKNOWLEDGEMENTS

We thank Benjamin Tsui and Michael Green for helpful discussions. Support was provided by R24CA92871.

Portions of this manuscript have appeared in the Journal of Cellular Biochemistry (2002; Suppl. 39, pp. 211-220).

REFERENCES

References 179-181 are related articles recently published in Current Pharmaceutical Design.

[162] Johnstrom P, Harris NG, Fryer TD, Barret O, Clark JC, Pickard JD, et al. (18)F-Endothelin-1, a positron emission tomography (PET) radioligand for the endothelin receptor system: radiosynthesis and in vivo imaging using microPET. Clin Sc (Lond) 2002; 103(Suppl 48): 48S-58S.

