Compact SiPM based Detector Module for Time-of-Flight PET/MR

M. Ritzert1, V. Mlotok1, I. Perić1, P. Fischer1, C. Piemonte2, N. Zorzi2, T. Solf3, V. Schulz3, A. Thon3

1Institute for Computer Engineering
Heidelberg University, Mannheim, Germany

2Fondazione Bruno Kessler
Trento, Italy

3Philips Research Europe
Aachen, Germany

Realtime Conference, Beijing, 2009
Project funded by the European Union in FP7.

- Develop a compact PET detector module for use in a simultaneous ToF PET/MR detector, scalable to a whole-body scanner.

- Develop novel reconstruction algorithms to make good use of the available information (MR based attenuation and motion correction).
Requirements for the PET Detector

- **MR compatible design**, i.e. no magnetic components, especially no PMTs, inside the magnet, no wire loops.
- **Fit inside the little available space** inside the MR scanner.
 1. Develop a compact detector module.
 2. Require few wire and other connections through the MR scanner.
- **No relevant performance degradation** by MR gradients and HF signals from MR operation.
- **Sub-nanosecond timing** for ToF PET.
- **Several thousand channels** even in a “small” animal scanner.
- **Rugged design** to withstand the vibrations inside an MR scanner.
Use a light guide to guide the scintillation light to PMT detectors outside the magnet. Drawback: Lots of optical fibres, bad light yield.

APD detectors with first amplification stage inside the field, all other processing outside the B field. Drawback: Lots of connections required, potential of large noise pickup on long wires.

→ Not scalable.

Our Approach

Put everything inside the tube:

- Light detection
- Amplification
- Digitization
- Timestamping
- Serialization

→ Only few data connections for a large number of channels.
Methods

- Highly integrated electronics.
- Very compact module design.
- Large area SiPM detectors.
- Aggressive mechanics and cooling.
- Differential architecture for EMI robustness.
- Modular concept with defined interfaces on the connectors.

Actual size: 33×33 mm².
Top PCB: Detectors

- 64 channels.
- 4×4 mm² SiPMs.
- 4×4 monolithic arrays of 2×2 silicon photomultipliers.
 - Entire surface covered by SiPMs
 - High packing fraction.
- Passive components required to interface to the ASICs located on the bottom side of the PCB.
Middle PCB: Hit Digitizing

- Two readout ASICs, each handling 32 SiPM channels.
 - Self-triggering by leading-edge discriminator.
 - 100 ps FWHM coincidence timing resolution.
 - 20 bit timestamps.
 - 9 bit ADC for energy readout.
- Digitization of absolute arrival time and signal energy.
- All-digital, differential output to the FPGA.
Bottom PCB: Control, Processing

- **Xilinx Spartan FPGA for**
 - Control of the ASICs.
 - Hit data preprocessing.
 - Interfacing between the ASICs and the system.

- **DACs to generate bias voltages for the ASICs and SiPM devices.**

- **Interface to DAQ: Several LVDS connections.**

- **Local analog power regulation.**
Test Setup

- Testboard containing a single PCB stack and interface to USB.
- Light-tight box for measurements with SiPMs.
- Detector board replaced with dummy board connecting pulse inputs to SMA connectors for ASIC characterization.
- Linux-based data acquisition and data analysis.
Results – Setup Verification

\(^{22}\text{Na} \) spectrum measured with a single LYSO crystal standing on one SiPM. Bad optical coupling! → Bad resolution.
But: Proves that the entire stack works as expected!
Results – Discriminator Threshold

![Graph showing the relationship between Trigger Voltage [mV] and Triggers Seen [%].

- **Measurement:**
 - 3.0 m ± 626 µV

RTC, 2009
Discriminator Schematics

Expected Behavior

Trigger Rate

several σ noise

0

bar range

in next plot

Threshold Setting

Trigger Out

differential pair input

Results – Threshold Dispersion I
Results – Threshold Dispersion II

Threshold Setting [V] vs Channel

RTC, 2009
Bar offset: Switching offset of a differential pair of NMOS transistors in close proximity.

Effects: Large threshold dispersion between channels, limit on lowest possible threshold.

Compensation circuit implemented in next generation ASIC.
Future System Integration

- Motherboard PCB with six (3×2) stacks with minimal spacing.
- Large FPGA to process the data and send it off via Gigabit Ethernet.
- Box to firmly hold the components and provide the infrastructure for cooling.
Outlook

- Improved ASIC
 - Decreased discriminator threshold dispersion.
 - Lower power consumption.
 - Should be back from fabrication just today.

- Operation with full crystal array.
- Measure performance in MR.
This project is supported by the European Union under the 7th framework program (Grant Agreement #201651).